欢迎访问学兔兔,学习、交流 分享 !

返回首页 |
当前位置: 首页 > 书籍手册>化学书籍 >催化剂评价与表征

催化剂评价与表征

收藏
  • 大小:34.02 MB
  • 语言:中文版
  • 格式: PDF文档
  • 类别:化学书籍
推荐:升级会员 无限下载,节约时间成本!
关键词:表征   编著   催化剂   评价   2011
资源简介
催化剂评价与表征
出版时间:2011年版
内容简介
  催化剂是实现化工生产的必要化学物质,催化剂及催化反应的研究和开发已成为国内外化学工程与技术领域研究的热点。本书根据国内外最新研究进展并结合作者近年来的研究成果,全面系统地介绍了催化剂评价和表征新技术及其应用,内容包括:催化剂活性评价的基本原理与主要的表征方法;催化剂活性、选择性和稳定性的评价方法;催化剂结构与性能表征的研究技术方法及原理;催化剂现代物理表征技术的详尽分析和比较;计算机技术在原子水平上研究催化剂。提高了催化剂的可预见性。《催化剂评价与表征》可供从事工业催化剂制备及催化研究的工作者阅读参考,也适合高等院校化学工程与工艺专业本科生,化学工程与技术专业研究生作为教学参考书使用。
目录
第1章 绪论
1.1 催化剂
1.1.1 催化剂的定义
1.1.2 催化剂的组成
1.2 催化反应
1.2.1 均相催化
1.2.2 多相催化
1.2.3 生物催化
1.2.4 催化反应热力学和动力学
1.3 催化剂评价指标和表征方法
1.3.1 催化剂评价指标
1.3.2 催化剂表征方法
参考文献
第2章 催化剂评价
2.1 催化剂活性和选择性评价
2.1.1 催化剂活性和选择性
2.1.2 催化剂评价装置
2.1.3 催化剂的活性和选择性评价实例
2.2 催化剂稳定性和寿命评价
2.2.1 催化剂稳定性和寿命
2.2.2 催化剂稳定性评价实例
参考文献
第3章 催化剂结构与性能表征
3.1 催化剂密度
3.1.1 表观堆积密度
3.1.2 表观颗粒密度
3.1.3 真密度
3.2 催化剂颗粒分析
3.2.1 颗粒尺寸
3.2.2 平均粒径、粒径分布
3.2.3 粒度分析注意事项
3.2.4 粒度分析方法
3.3 孔结构
3.3.1 吸附平衡等温线
3.3.2 比表面测试表征
3.3.3 孔结构表征
3.3.4 介孔分子筛孔结构表征
3.3.5 分子筛吸附技术应用
3.3.6 物理吸附仪器简介
3.4 机械强度
3.4.1 压缩与拉伸强度
3.4.2 横向断裂强度
3.4.3 抗压碎强度
3.4.4 冲击强度
3.4.5 抗机械磨损和磨耗性能
3.5 离子液体催化剂的结构表征
3.5.1 离子液体的熔点
3.5.2 离子液体的密度和黏度
3.5.3 离子液体的酸碱性
3.5.4 离子液体的导电性和电化学窗口
3.5.5 离子液体的热稳定性和化学稳定性
3.5.6 离子液体的结构测定
3.6 催化剂表征技术简介
3.6.1 显微分析法
3.6.2 热分析技术
3.6.3 程序升温分析技术
3.6.4 X射线衍射分析法
3.6.5 电子能谱技术
3.6.6 分子光谱法
3.6.7 共振谱技术
3.6.8 原位技术
参考文献
第4章 热分析技术
4.1 热分析技术简介
4.1.1 热分析技术的概念
4.1.2 热分析技术的发展
4.1.3 热分析技术的分类
4.2 几种常见的热分析技术
4.2.1 差热分析法(DTA)
4.2.2 差示扫描量热法(DSC)
4.2.3 热重法(TG)
4.3 热分析联用技术
4.3.1 热分析与质谱联用
4.3.2 热分析与傅里叶红外光谱联用
4.3.3 热分析与气相色谱联用
4.3.4 热分析技术之间联用
4.4 热分析在催化研究中的应用
4.4.1 催化剂制备条件的选择
4.4.2 催化剂组成的确定
4.4.3 活性组分单层分散阈值的确定
4.4.4 研究活性金属离子的配位状态及其分布
4.4.5 研究活性组分与载体的相互作用
4.4.6 固体催化剂表面酸碱性表征
4.4.7 离子液体的热稳定性表征
参考文献
第5章 化学吸附与程序升温技术
5.1 化学吸附技术
5.1.1 化学吸附的基本原理
5.1.2 化学吸附的特点及其在催化研究中的应用
5.1.3 吸附热的研究在催化研究中的应用
5.1.4 吸附速度与吸附活化能在催化研究中的应用
5.1.5 化学吸附法测定催化剂表面“活性基团”原子数的方法
5.1.6 应用化学吸附进行研究中的几个问题
5.1.7 化学吸附研究方法的展望
5.2 程序升温分析技术
5.2.1 程序升温脱附(TPD)
5.2.2 程序升温还原(TPR)
5.2.3 程序升温氧化(TPO)
5.2.4 程序升温硫化(TPS)
5.2.5 程序升温表面反应(TPSR)
5.2.6 程序升温技术在其他方面的应用
5.3 结语
5.4 程序升温图谱应用
参考文献
第6章 X射线衍射技术
6.1 晶体学基础
6.2 晶体的X射线衍射基础
6.2.1 X射线衍射方向
6.2.2 粉末法的X射线衍射强度
6.2.3 多晶X射线衍射
6.3 多晶X射线衍射技术
6.3.1 定性相分析
6.3.2 定量相分析
6.3.3 晶粒尺寸和微观应力的计算
6.3.4 结晶度的测定
6.3.5 残余应力的测定
6.3.6 小角X射线散射(SAXS)
6.3.7 薄膜试样的测定
6.3.8 高、低温原位分析
6.3.9 X射线吸收精细结构谱分析
6.3.10 Rietveld方法衍射峰形拟合
6.4 X射线衍射技术在催化剂研究中的应用
6.4.1 在沸石分子筛催化剂研究中的应用
6.4.2 在介孔材料研究中的应用
6.4.3 在负载型/复合型催化剂研究中的应用
6.4.4 在非晶态合金催化剂研究中的应用
6.4.5 在插层组装结构催化剂研究中的应用
6.4.6 晶粒尺寸及微观应力的实验及计算
参考文献
第7章 电子显微技术与X射线能谱技术
7.1 电子显微镜概述
7.2 扫描电子显微镜
7.2.1 扫描电子显微镜的工作原理
7.2.2 扫描电子显微镜的构造与特点
7.2.3 扫描电子显微镜的操作程序
7.2.4 扫描电子显微镜在催化剂研究领域的应用
7.3 透射电子显微镜(TEM)
7.3.1 透射电子显微镜的工作原理
7.3.2 透射电子显微镜的构造与特点
7.3.3 透射电子显微镜的操作程序
7.3.4 透射电子显微镜在催化剂研究中的应用
7.4 其他电子显微技术及其在催化剂研究中的应用
7.4.1 分析电子显微镜(AEM)
7.4.2 扫描透射电子显微镜(STEM)
7.4.3 扫描探针显微镜(SPM)
参考文献
第8章 光谱技术
8.1 红外光谱技术
8.1.1 红外光谱的基本原理
8.1.2 红外光谱仪
8.1.3 红外光谱在催化剂表征的应用
8.2 紫外光谱技术
8.2.1 概述
8.2.2 紫外漫反射光谱工作原理
8.2.3 仪器
8.2.4 标准物的选择
8.2.5 样品的处理
8.2.6 影响漫反射光谱的因素
8.2.7 在催化剂表征中的应用
8.2.8 小结
8.3 拉曼光谱技术
8.3.1 拉曼散射的经典理论
8.3.2 拉曼散射的量子理论
8.3.3 激光拉曼光谱仪
8.3.4 新拉曼光谱技术在催化研究中的应用
参考文献
第9章 电子能谱技术
9.1 电子能谱的基本原理
9.2 X射线光电子能谱(XPS)
9.2.1 谱图特征
9.2.2 XPS谱图分析技术
9.2.3 XPS在催化研究中的应用
9.3 紫外光电子能谱(UPS)
9.3.1 谱图特征
9.3.2 振动精细结构
9.3.3 自旋轨道偶合
9.3.4 自旋自旋偶合
9.3.5 UPS在催化研究中的应用
9.4 俄歇电子能谱(AES)
9.4.1 俄歇过程和俄歇电子能量
9.4.2 俄歇谱图
9.4.3 化学效应
9.4.4 俄歇电子能谱的应用
参考文献
第10章 固体核磁共振技术
10.1 核磁共振技术
10.2 固体高分辨核磁共振技术
10.3 固体高分辨NMP技术在多相催化剂研究中的应用
10.3.1 29Si MAS NMR研究
10.3.2 27Al MAS NMR研究
10.3.3 其他核研究
10.4 固体高分辨NMR在催化剂酸性表征中的应用
10.4.1 1H MAS NMR研究催化剂表面酸性
10.4.2 采用吸附剂研究催化剂表面酸性
10.5 固体高分辨NMR技术在多相催化反应研究中的应用
10.5.1 固体高分辨NMR技术在多相催化反应研究中的应用
10.5.2 催化反应过程中催化剂结构变化的研究
10.5.3 研究分子筛晶体孔道中吸附有机物的化学状态
10.5.4 确认活性中心
10.6 超极化129Xe核磁共振技术及其在多孔催化材料表征中的应用
10.6.1 孔结构研究
10.6.2 探测多孔材料中客体物种的分布
10.6.3 吸附与扩散行为的研究
10.6.4 原位反应过程的检测
10.7 固体高分辨NMR技术研究催化剂失活
10.7.1 13C MAS NMR研究分子筛结炭
10.7.2 Si和27Al MAS NMR研究分子筛结炭
10.7.3 1H MAS NMR研究分子筛结炭
10.8 原位固体高分辨NMR技术
10.9 结束语
参考文献
第11章 电子顺磁共振技术
11.1 电子顺磁共振原理
11.2 EPR在催化研究中的应用
11.2.1 吸附物种的确定
11.2.2 表面活性中心的表征
11.2.3 金属氧化物载体Tammann温度的测定
11.2.4 催化剂中金属离子间的电子传递
11.2.5 催化剂活性中心中毒研究
11.2.6 表面顺磁物种的动态性质
11.2.7 催化反应动力学研究
11.3 原位EPR技术
11.4 结语
参考文献
第12章 计算机模拟技术
12.1 催化剂理论研究计算方法
12.1.1 量子力学法
12.1.2 分子力学方法
12.1.3 分子动力学模拟
12.1.4 Monte Carlo模拟方法
12.1.5 量子力学/分子力学组合方法
12.2 催化剂模型研究
12.2.1 有机小分子催化模型
12.2.2 气固相吸附催化模型
12.2.3 团簇催化模型
12.2.4 层状催化模型
12.2.5 配合物催化模型
12.3 催化机理计算
12.3.1 催化机理计算实例
12.3.2 催化机理计算实例
12.4 催化剂设计计算
12.4.1 传统的催化剂设计方法
12.4.2 反应工程与催化剂的设计
12.4.3 专家系统设计
12.4.4 人工神经网络设计
12.4.5 计算机分子水平设计
12.4.6 催化剂设计考虑的因素
12.4.7 催化剂设计实例
参考文献
下载地址