欢迎访问学兔兔,学习、交流 分享 !

返回首页 |
当前位置: 首页 > 书籍手册>电力电气 >微机电系统基础(英文版 第二版)

微机电系统基础(英文版 第二版)

收藏
  • 大小:219.76 MB
  • 语言:中文版
  • 格式: PDF文档
  • 类别:电力电气
推荐:升级会员 无限下载,节约时间成本!
关键词:微机   英文   系统   基础   美刘昶著
资源简介
微机电系统基础(英文版 第二版)
出版时间:2011年版
内容简介
  本书全面论述了微机电系统(MEMS)的基础知识,涵盖了MEMS技术的主要方面,同时引用了经典的MEMS研究论文和前沿的技术论文,为学生深入学习MEMS技术提供了指引。书中提炼出了四个典型的传感器实例:惯性传感器、压力传感器、流量传感器和触觉传感器,并介绍了利用不同原理、材料和工艺制造这些传感器的方法,既便于比较,又可以启发学生的创新意识并提高创新能力。本书被美国斯坦福大学、伊利诺伊大学等选为教材。
目录
PREFACE
A NOTE TO INSTRUCTORS
NOTATIONAL CONVENTIONS
Chapter 1 Introduction
 1.0 Preview
 1.1 The History of MEMS Development
  1.1.1 From the Beginning to 1990
  1.1.2 From 1990 to 2001
  1.1.3 2002 to Present
  1.1.4 Future Trends
 1.2 The Intrinsic Characteristics of MEMS
  1.2.1 Miniaturization
  1.2.2 Microelectronics Integration
  1.2.3 Parallel Fabrication with Precision
 1.3 Devices: Sensors and Actuators
  1.3.1 Energy Domains and Transducers
  1.3.2 Sensors Considerations
 13.3 Sensor Noise and Design Complexity
  1.3.4 Actuators Considerations
  Summary
  Problems
  References
Chapter 2 First-Pass Introduction to Microfabrication
 2.0 Preview
  2.1 Overview of Microfabrication
 2.2 Essential Overview of Frequently Used MicrofabricationProcesses
  2.2.1 Photolithography
  2.2.2 Thin Film Deposition
  2.2.3 Thermal Oxidation of Silicon
  2.2.4 Wet Etching
  2.2.5 Silicon Anisotropic Etching
  2.2.6 Plasma Etching and Reactive Ion Etching
  2.2.7 Doping
  2.2.8 Wafer Dicing
  2.2.9 Wafer Bonding
 2.3 The Microelectronics Fabrication Process Flow
 2.4 Silicon-Based MEMS Processes
 2.5 Packaging and Integration
  2.5.1 Integration Options
  2.5.2 Encapsulation
 2.6 New Materials and Fabrication Processes
 2.7 Process Selection and Design
  2.7.1 Points of Consideration for Deposition Processes
  2.7.2 Points of Consideration for Etching Processes
  2.7.3 Ideal Rules for Building a Process Flow
  2.7.4 Rules for Building a Robust Process
  Summary
  Problems
  References
Chapter 3 Review of Essential Electrical and MechanicalConcepts
 3.0 Preview
 3.1 Conductivity of Semiconductors
  3.1.1 Semiconductor Materials
  3.1.2 Calculation of Charge Carrier Concentration
  3.1.3 Conductivity and Resistivity
 3.2 Crystal Planes and Orientations
 3.3 Stress and Strain
  3.3.1 Internal Force Analysis: Newton’s Laws of Motion
  3.3.2 Definitions of Stress and Strain
  3.3.3 General Scalar Relation Between Tensile Stress andStrain
  3.3.4 Mechanical Properties of Silicon and Related ThinFilms
  3.3.5 General Stress—Strain Relations
 3.4 Flexural Beam Bending Analysis Under Simple LoadingConditions
  3.4.1 Types of Beams
  3.4.2 Longitudinal Strain Under Pure Bending
  3.4.3 Deflection of Beams
  3.4.4 Finding the Spring Constants
 3.5 Torsional Deflections
 3.6 Intrinsic Stress
 3.7 Dynamic System, Resonant Frequency, and Quality Factor
  3.7.1 Dynamic System and Governing Equation
  3.7.2 Response Under Sinusoidal Resonant Input
  3.7.3 Damping and Quality Factor
  3.7.4 Resonant Frequency and Bandwidth
 3.8 Active Tuning of Spring Constant and Resonant Frequency
 3.9 A List of Suggested Courses and Books
  Summary
  Problems
  References
Chapter 4 Electrostatic Sensing and Actuation
 4.0 Preview
 4.1 Introduction to Electrostatic Sensors and Actuators
 4.2 Parallel-Plate Capacitor
  4.2.1 Capacitance of Parallel Plates
  4.2.2 Equilibrium Position of Electrostatic Actuator underBias
  4.2.3 Pull-in Effect of Parallel-Plate Actuators
 4.3 Applications of Parallel-Plate Capacitors
  4.3.1 Inertia Sensor
  4.3.2 Pressure Sensor
  4.3.3 Flow Sensor
  4.3.4 Tactile Sensor
  4.3.5 Parallel-Plate Actuators
 4.4 Interdigitated Finger Capacitors
 4.5 Applications of Comb-Drive Devices
  4.5.1 Inertia Sensors
  4.5.2 Actuators
  Summary
  Problems
  References
Chapter 5 Thermal Sensing and Actuation
 5.0 Preview
 5.1 Introduction
  5.1.1 Thermal Sensors
  5.1.2 Thermal Actuators
  5.1.3 Fundamentals of Thermal Transfer
 5.2 Sensors and Actuators Based on Thermal Expansion
  5.2.1 Thermal Bimorph Principle
  5.2.2 Thermal Actuators with a Single Material
 5.3 Thermal Couples
 5.4 Thermal Resistors
 5.5 Applications
  5.5.1 Inertia Sensors
  5.5.2 Flow Sensors
  5.5.3 Infrared Sensors
  5.5.4 Other Sensors
  Summary
  Problems
  References
Chapter 6 Piezoresistive Sensors
 6.0 Preview
 6.1 Origin and Expression of Piezoresistivity
 6.2 Piezoresistive Sensor Materials
  6.2.1 Metal Strain Gauges
  6.2.2 Single Crystal Silicon
  6.2.3 Polycrystalline Silicon
 6.3 Stress Analysis of Mechanical Elements
  6.3.1 Stress in Flexural Cantilevers
  6.3.2 Stress and Deformation in Membrane
 6.4 Applications of Piezoresistive Sensors
  6.4.1 Inertial Sensors
  6.4.2 Pressure Sensors
  6.4.3 Tactile Sensor
  6.4.4 Flow Sensor
  Summary
  Problems
  References
Chapter 7 Piezoelectric Sensing and Actuation
 7.0 Preview
 7.1 Introduction
  7.1.1 Background
  7.1.2 Mathematical Description of Piezoelectric Effects
  7.1.3 Cantilever Piezoelectric Actuator Model
 7.2 Properties of Piezoelectric Materials
  7.2.1 Quartz
  7.2.2 PZT
  7.2.3 PVDF
  7.2.4 ZnO
  7.2.5 Other Materials
 7.3 Applications
  7.3.1 Inertia Sensors
  7.3.2 Acoustic Sensors
  7.3.3 Tactile Sensors
  7.3.4 Flow Sensors
  7.3.5 Surface Elastic Waves
  Summary
  Problems
  References
Chapter 8 Magnetic Actuation
 8.0 Preview
 8.1 Essential Concepts and Principles
  8.1.1 Magnetization and Nomenclatures
  8.1.3 Selected Principles of Micro Magnetic Actuators
  8.2 Fabrication of Micro Magnetic Components
 8.2.1 Deposition of Magnetic Materials
  8.2.2 Design and Fabrication of Magnetic Coil
 8.3 Case Studies of MEMS Magnetic Actuators
  Summary
  Problems
  References
Chapter 9 Summary of Sensing and Actuation Methods
 9.0 Preview
 9.1 Comparison of Major Sensing and Actuation Methods
 9.2 Other Sensing and Actuation Methods
  9.2.1 Tunneling Sensing
  9.2.3 Optical Sensing
  9.2.4 Field Effect Transistors
  9.2.5 Radio Frequency Resonance Sensing
  Summary
  Problems
  References
Chapter 10 Bulk Micromachining and Silicon AnisotropicEtching
 10.0 Preview
 10.1 Introduction
 10.2 Anisotropic Wet Etching
  10.2.1 Introduction
  10.2.2 Rules of Anisotropic Etching—Simplest Case
  10.2.3 Rules of Anisotropic Etching—Complex Structures
  10.2.4 Forming Protrusions
  10.2.5 Interaction of Etching Profiles from IsolatedPatterns
  10.2.6 Summary of Design Methodology
  10.2.7 Chemicals for Wet Anisotropic Etching
 10.3 Dry Etching and Deep Reactive Ion Etching
 10.4 Isotropic Wet Etching
 10.5 Gas Phase Etchants
 10.6 Native Oxide
 10.7 Special Wafers and Techniques
  Summary
  Problems
  References
Chapter 11 Surface Micromachining
 11.0 Preview
 11.1 Basic Surface Micromachining Processes
  11.1.1 Sacrificial Etching Process
  11.1.2 Micro Motor Fabrication Process—A First Pass
  11.2.3 Micro Motor Fabrication Process—A Second Pass
  11.1.4 Micro Motor Fabrication Process—Third Pass
 11.2 Structural and Sacrificial Materials
  11.2.1 Material Selection Criteria for a Two-layer Process
  11.2.2 Thin Films by Low Pressure Chemical Vapor Deposition
  11.2.3 Other Surface Micromachining Materials and Processes
 11.3 Acceleration of Sacrificial Etch
 11.4 Stiction and Anti-stiction Methods
  Summary
  Problems
  References
Chapter 12 Process Synthesis: Putting It All Together
 12.0 Preview
 12.1 Process for Suspension Beams
 12.2 Process for Membranes
 12.3 Process for Cantilevers
  12.3.1 SPM Technologies Case Motivation
  12.3.2 General Fabrication Methods for Tips
  12.3.3 Cantilevers with Integrated Tips
  12.3.4 Cantilevers with Integrated Sensors
  12.3.5 SPM Probes with Actuators
 12.4 Practical Factors Affecting Yield of MEMS
  Summary
  Problems
  References
Chapter 13 Polymer MEMS
 13.0 Preview
 13.1 Introduction
 13.2 Polymers in MEMS
  13.2.1 Polyimide
  13.2.2 SU-8
  13.2.3 Liquid Crystal Polymer (LCP)
  13.2.4 PDMS
  13.2.5 PMMA
  13.2.6 Parylene
  13.2.7 Fluorocarbon
  13.2.8 Other Polymers
 13.3 Representative Applications
  13.3.1 Acceleration Sensors
  13.3.2 Pressure Sensors
  13.3.3 Flow Sensors
  13.3.4 Tactile Sensors
  Summary
  Problems
  References
Chapter 14 Micro Fluidics Applications
 14.0 Preview
 14.1 Motivation for Microfluidics
 14.2 Essential Biology Concepts
 14.3 Basic Fluid Mechanics Concepts
  14.3.1 The Reynolds Number and Viscosity
  14.3.2 Methods for Fluid Movement in Channels
  14.3.3 Pressure Driven Flow
  14.3.4 Electrokinetic Flow
  14.3.5 Electrophoresis and Dielectrophoresis
 14.4 Design and Fabrication of Selective Components
  14.4.1 Channels
  14.4.2 Valves
  Summary
  Problems
  References
Chapter 15 Case Studies of Selected MEMS Products
 15.0 Preview
 15.1 Case Studies: Blood Pressure (BP) Sensor
  15.1.1 Background and History
  15.1.2 Device Design Considerations
  15.1.3 Commercial Case: NovaSensor BP Sensor
 15.2 Case Studies: Microphone
  15.2.1 Background and History
  15.2.2 Design Considerations
  15.2.3 Commercial Case: Knowles Microphone
 15.3 Case Studies: Acceleration Sensors
  15.3.1 Background and History
  15.3.2 Design Considerations
  15.3.3 Commercial Case: Analog Devices and MEMSIC
 15.4 Case Studies: Gyros
  15.4.1 Background and History
  15.4.2 The Coriolis Force
  15.4.3 MEMS Gyro Design
  15.4.4 Single Axis Gyro Dynamics
  15.4.5 Commercial Case: InvenSense Gyro
 15.5 Summary of Top Concerns for MEMS Product Development
  15.5.1 Performance and Accuracy
  15.5.2 Repeatability and Reliability
  15.5.3 Managing the Cost of MEMS Products
  15.5.4 Market Uncertainties, Investment, and Competition
  Summary
  Problems
  References
Appendix 1 Characteristics of Selected MEMS Materials
Appendix 2 Frequently Used Formula for Beams, Cantilevers, andPlates
Appendix 3 Basic Tools for Dealing with a Mechanical Second-orderDynamic System
Appendix 4 Most Commonly Encountered Materials
Appendix 5 Most Commonly Encountered Material Removal ProcessSteps
Appendix 6 A List of General Compatibility between GeneralMaterials and Processes
Appendix 7 Comparison of Commercial Inertial Sensors
Answers to Selected Problems
Index
下载地址