欢迎访问学兔兔,学习、交流 分享 !

返回首页 |
当前位置: 首页 > 书籍手册>物理学书籍 >固态物理学基础

固态物理学基础

收藏
  • 大小:120.91 MB
  • 语言:中文版
  • 格式: PDF文档
  • 类别:物理学书籍
推荐:升级会员 无限下载,节约时间成本!
关键词:固态   物理学   基础   奥马尔   2011
资源简介
固态物理学基础
作者:(美)奥马尔 著
出版时间:2011年版
内容简介
  《固态物理学基础》是一部优秀的介绍固态物理学入门类书籍,也是一本很好的本科生教材。《固态物理学基础》是1975年版本的修订版,在原来的基础上做了不少改进。内容安排结构紧凑,合理,逻辑性强。尽管本书出版的比较早,但不失经典,覆盖面广,囊括了许多读者了解的话题,如,半导体设备和议题,液态晶体,聚合体和一些生物分子。大量的实用案例是本书的一大特色,更加增强了本书的可读性。目次:晶体结构和原子间作用力;x射线,中子和晶体中的电子偏移;格振动:热力学,声学和光学性质;金属ⅰ:自由电子模型;金属ⅱ:固体中的能级;半导体ⅰ:理论;半导体ⅱ:设备;电介体和固体的光学性质;磁性和磁共振;超导体;冶金学议题和固体中的缺陷;材料和固态化学;固态生物化学。附录:量子力学基础。读者对象:物理,应用物理专业的本科生,研究生以及相关工程领域的科研人员。
目录
chapter 1 crystal structures and interatomic forces
 1.1 introduction
 1.2 the crystalline state
 1.3 basic definitions
 1.4 the fourteen bravais lattices and the seven crystalsystems
 1.5 elements of symmetry
 1.6 nomenclature of crystal directions and crystal planes; millerindices
 1.7 examples of simple crystal structures
 1.8 amorphous solids and liquids
 1.9 interatomic forces
 1.10 types of bonding
chapter 2 x-ray, neutron, and electron diffraction incrystals
 2.1 introduction
 2.2 generation and absorption of x-rays
 2.3 bragg's law
 2.4 scattering from an atom
 2.5 scattering from a crystal
 2.6 the reciprocal lattice and x-ray diffraction
 2.7 the diffraction condition and bragg's law
 2.8 scattering from liquids
 2.9 experimental techniques
 2.10 other x-ray applications in solid-state physics
 2.11 neutron diffraction
 2.12 electron diffraction
chapter 3 lattice vibrations: thermal, acoustic, and opticalproperties
 3.1 introduction
 3.2 elastic waves
 3.3 enumeration of modes; density of states of a continuousmedium
 3.4 specific heat: models of einstein and debye
 3.5 the phonon
 3.6 lattice waves
 3.7 density of states of a lattice
 3.8 specific heat: exact theory
 3.9 thermal conductivity
 3.10 scattering of x-rays, neutrons, and light by phonons
 3.11 microwave ultrasonics
 3.12 lattice optical properties in the infrared
chapter 4 metals i: the free. electron model
 4.1 introduction
 4.2 conduction electrons
 4.3 the free-electron gas
 4.4 electrical conductivity
 4.5 electrical resistivity versus temperature
 4.6 heat capacity of conduction electrons
 4.7 the fermi surface
 4.8 electrical conductivity; effects of the fermi surface
 4.9 thermal conductivity in metals
 4.10 motion in a magnetic field: cyclotron resonance and the halleffect
 4.11 the ac conductivity and optical properties
 4.12 thermionic emission
 4.13 failure of the free-electron model
chapter 5 metals il: energy bands in solids
 5.1 introduction
 5.2 energy spectra in atoms, molecules, and solids
 5.3 energy bands in solids; the bloch theorem
 5.4 band symmetry in k-space; brillouin zones
 5.5 number of states in the band
 5.6 the nearly-free-electron model
 5.7 the energy gap and the bragg reflection
 5.8 the tight-binding model
 5.9 calculations of energy bands
 5.10 metals, insulators, and semiconductors
 5.11 density of states
 5.12 the fermi surface
 5.13 velocity of the bloch electron
 5.14 electron dynamics in an electric field
 5.15 the dynamical effective mass
 5.16 momentum, crystal momentum, and physical origin of theeffective mass
 5.17 the hole
 5.18 electrical conductivity
 5.19 electron dynamics in a magnetic field: cyclotron resonanceand the hall effect
 5.20 experimental methods in determination of band structure
 5.21 limit of the band theory; metal-insulator transition
chapter 6 semiconductors i: theory
 6.1 introduction
 6.2 crystal structure and bonding
 6.3 band structure
 6.4 carrier concentration; intrinsic semiconductors
 6.5 impurity states
 6.6 semiconductor statistics
 6.7 electrical conductivity; mobility
 6.8 magnetic field effects: cyclotron resonance and halleffect
 6.9 band structure of real semiconductors
 6.10 high electric field and hot electrons
 6.11 the gunn effect
 6.12 optical properties: absorption processes
 6.13 photoconductivity
 6.14 luminescence
 6.15 other optical effects
 6.16 sound-wave amplification (acoustoelectric effect)
 6.17 diffusion
chapter 7 semiconductors ii: devices
 7.1 introduction
 7.2 the p-n junction: the rectifier
 7.3 the p-n junction: the junction itself
 7.4 the junction transistor
 7.5 the tunnel diode
 7.6 the gunn diode
 7.7 the semiconductor laser
 7.8 the field-effect transistor, the semiconductor lamp, and otherdevices
 7.9 integrated circuits and microelectronics
chapter 8 dielectric and optical properties of solids
 8.1 introduction
 8.2 review of basic formulas
 8.3 the dielectric constant and polarizability; the localfield
 8.4 sources of polarizability
 8.5 dipolar polarizability
 8.6 dipolar dispersion
 8.7 dipolar polarization in solids
 8.8 ionic polarizability
 8.9 electronic polarizability
 8.10 piezoelectricity
 8.11 ferroelectricity
chapter 9 magnetism and magnetic resonances
 9.1 introductio
 9.2 review of basic formulas
 9.3 magnetic susceptibility
 9.4 classification of materials
 9.5 langevin diamagnetism
 9.6 paramagnetism
 9.7 magnetism in metals
 9.8 ferromagnetism in insulators
 9.9 antiferromagnetism and ferrimagnetism
 9.10 ferromagnetism in metals
 9.11 ferromagnetic domains
 9.12 paramagnetic resonance; the maser
 9.13 nuclear magnetic resonance
 9.14 ferromagnetic resonance; spin waves
chapter 10 superconductivity
 10.1 introduction
 10.2 zero resistance
 10.3 perfect diamagnetism, or the meissner effect
 10.4 the critical field
 10.5 thermodynamics of the superconducting transition
 10.6 electrodynamics of superconductors
 10.7 theory of superconductivity
 10.8 tunneling and the josephson effect
 10.9 miscellaneous topics
chapter 11 topics in metallurgy and defects in solids
 11.1 introduction
 11.2 types of imperfections
 11.3 vacancies
 11.4 diffusion
 11.5 metallic alloys
 11.6 dislocations and the mechanical strength of metals
 11.7 lonic conductivity
 11.8 the photographic process
 11.9 radiation damage in solids
chapter 12 materials and solid-state chemistry
 12.1 introduction
 12.2 amorphous semiconductors
 12.3 liquid crystals
 12.4 polymers
 12.5 nuclear magnetic resonance in chemistry
 12.6 electron spin resonance in chemistry
 12.7 chemical applications of the msssbauer effect
chapter 13 solid.state biophysics
 13.1 introduction
 13.2 biological applications of delocalization in molecules
 13.3 nucleic acids
 13.4 proteins
 13.5 miscellaneous topics
appendix elements of quantum mechanics
 a.1 basic concepts
 a.2 the schrsdinger equation
 a.3 one-dimensional examples
 a.4 the angular momentum
 a.5 the hydrogen atom; multielectron atoms; periodic table of theel
 a.6 perturbation theory
 a.7 the hydrogen molecule and the covalent bond
 a.8 directed bonds
index
下载地址